Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
PLoS Biol ; 21(12): e3002425, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38079449

RESUMO

Ciliopathies are associated with wide spectrum of structural birth defects (SBDs), indicating important roles for cilia in development. Here, we provide novel insights into the temporospatial requirement for cilia in SBDs arising from deficiency in Ift140, an intraflagellar transport (IFT) protein regulating ciliogenesis. Ift140-deficient mice exhibit cilia defects accompanied by wide spectrum of SBDs including macrostomia (craniofacial defects), exencephaly, body wall defects, tracheoesophageal fistula (TEF), randomized heart looping, congenital heart defects (CHDs), lung hypoplasia, renal anomalies, and polydactyly. Tamoxifen inducible CAGGCre-ER deletion of a floxed Ift140 allele between E5.5 to 9.5 revealed early requirement for Ift140 in left-right heart looping regulation, mid to late requirement for cardiac outflow septation and alignment, and late requirement for craniofacial development and body wall closure. Surprisingly, CHD were not observed with 4 Cre drivers targeting different lineages essential for heart development, but craniofacial defects and omphalocele were observed with Wnt1-Cre targeting neural crest and Tbx18-Cre targeting epicardial lineage and rostral sclerotome through which trunk neural crest cells migrate. These findings revealed cell autonomous role of cilia in cranial/trunk neural crest-mediated craniofacial and body wall closure defects, while non-cell autonomous multi-lineage interactions underlie CHD pathogenesis, revealing unexpected developmental complexity for CHD associated with ciliopathies.


Assuntos
Ciliopatias , Cardiopatias Congênitas , Animais , Camundongos , Cílios/metabolismo , Cardiopatias Congênitas/genética , Desenvolvimento Embrionário , Proteínas de Transporte/metabolismo , Crânio , Ciliopatias/genética , Ciliopatias/metabolismo , Ciliopatias/patologia
2.
Nat Commun ; 14(1): 7436, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973980

RESUMO

The cranial vault in humans is highly variable, clinically relevant, and heritable, yet its genetic architecture remains poorly understood. Here, we conduct a joint multi-ancestry and admixed multivariate genome-wide association study on 3D cranial vault shape extracted from magnetic resonance images of 6772 children from the ABCD study cohort yielding 30 genome-wide significant loci. Follow-up analyses indicate that these loci overlap with genomic risk loci for sagittal craniosynostosis, show elevated activity cranial neural crest cells, are enriched for processes related to skeletal development, and are shared with the face and brain. We present supporting evidence of regional localization for several of the identified genes based on expression patterns in the cranial vault bones of E15.5 mice. Overall, our study provides a comprehensive overview of the genetics underlying normal-range cranial vault shape and its relevance for understanding modern human craniofacial diversity and the etiology of congenital malformations.


Assuntos
Craniossinostoses , Estudo de Associação Genômica Ampla , Criança , Humanos , Animais , Camundongos , Crânio/diagnóstico por imagem , Craniossinostoses/genética , Ossos Faciais , Encéfalo/diagnóstico por imagem
3.
bioRxiv ; 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37333142

RESUMO

Ciliopathies are associated with wide spectrum of structural birth defects (SBD), indicating important roles for cilia in development. Here we provide novel insights into the temporospatial requirement for cilia in SBDs arising from deficiency in Ift140 , an intraflagellar transport protein regulating ciliogenesis. Ift140 deficient mice exhibit cilia defects accompanied by wide spectrum of SBDs including macrostomia (craniofacial defects), exencephaly, body wall defects, tracheoesophageal fistula, randomized heart looping, congenital heart defects (CHD), lung hypoplasia, renal anomalies, and polydactyly. Tamoxifen inducible CAG-Cre deletion of a floxed Ift140 allele between E5.5 to 9.5 revealed early requirement for Ift140 in left-right heart looping regulation, mid to late requirement for cardiac outflow septation and alignment, and late requirement for craniofacial development and body wall closure. Surprisingly, CHD was not observed with four Cre drivers targeting different lineages essential for heart development, but craniofacial defects and omphalocele were observed with Wnt1-Cre targeting neural crest and Tbx18-Cre targeting epicardial lineage and rostral sclerotome through which trunk neural crest cells migrate. These findings revealed cell autonomous role of cilia in cranial/trunk neural crest mediated craniofacial and body wall closure defects, while non-cell autonomous multi-lineage interactions underlie CHD pathogenesis, revealing unexpected developmental complexity for CHD associated with ciliopathy.

4.
Front Genet ; 12: 674642, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34434215

RESUMO

The human face is a highly complex and variable structure resulting from the intricate coordination of numerous genetic and non-genetic factors. Hundreds of genomic loci impacting quantitative facial features have been identified. While these associations have been shown to influence morphology by altering the mean size and shape of facial measures, their effect on trait variance remains unclear. We conducted a genome-wide association analysis for the variance of 20 quantitative facial measurements in 2,447 European individuals and identified several suggestive variance quantitative trait loci (vQTLs). These vQTLs guided us to conduct an efficient search for gene-by-gene (G × G) interactions, which uncovered an interaction between PRICKLE1 and FOCAD affecting cranial base width. We replicated this G × G interaction signal at the locus level in an additional 5,128 Korean individuals. We used the hypomorphic Prickle1 Beetlejuice (Prickle1 Bj ) mouse line to directly test the function of Prickle1 on the cranial base and observed wider cranial bases in Prickle1 Bj/Bj . Importantly, we observed that the Prickle1 and Focadhesin proteins co-localize in murine cranial base chondrocytes, and this co-localization is abnormal in the Prickle1 Bj/Bj mutants. Taken together, our findings uncovered a novel G × G interaction effect in humans with strong support from both epidemiological and molecular studies. These results highlight the potential of studying measures of phenotypic variability in gene mapping studies of facial morphology.

5.
J Bone Miner Res ; 36(12): 2399-2412, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34423861

RESUMO

The expansion and growth of the endochondral skeleton requires organized cell behaviors that control chondrocyte maturation and oriented division. In other organs, these processes are accomplished through Wnt/planar cell polarity (Wnt/PCP) signaling pathway and require the protein-protein interactions of core components including Prickle1 (PK1) and Dishevelled (DVL). To determine the function of Wnt/PCP signaling in endochondral ossification of the cranial base and limb, we utilized the Prickle1Beetlejuice (Pk1Bj ) mouse line. The Pk1Bj allele has a missense mutation in the PK1 LIM1 domain that results in a hypomorphic protein. Similar to human patients with Robinow syndrome, the Prickle1Bj/Bj mouse mutants lack growth plate expansion resulting in shorter limbs and midfacial hypoplasia. Within the Prickle1Bj/Bj limb and cranial base growth plates we observe precocious maturation of chondrocytes and stalling of terminal differentiation. Intriguingly, we observed that the growth plate chondrocytes have randomized polarity based on the location of the primary cilia and the location of PRICKLE1, DVL2, and DVL3 localization. Importantly, mutant PK1Bj protein has decreased protein-protein interactions with both DVL2 and DVL3 in chondrocytes as revealed by in vivo co-immunoprecipitation and proximity ligation assays. Finally, we propose a model where the interaction between the Prickle1 LIM1 domain and DVL2 and DVL3 contributes to chondrocyte polarity and contributes to proximal-distal outgrowth of endochondral elements. © 2021 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Condrócitos , Osteogênese , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Polaridade Celular , Condrócitos/metabolismo , Proteínas Desgrenhadas , Lâmina de Crescimento/metabolismo , Humanos , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , Camundongos , Proteínas Supressoras de Tumor , Via de Sinalização Wnt
6.
Genes (Basel) ; 11(1)2020 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-31940751

RESUMO

Human midfacial clefting is a rare subset of orofacial clefting and in severe cases, the cleft separates the nostrils splitting the nose into two independent structures. To begin to understand the morphological and genetic causes of midfacial clefting we recovered the Unicorn mouse line. Unicorn embryos develop a complete midfacial cleft through the lip, and snout closely modelling human midfacial clefting. The Unicorn mouse line has ethylnitrosourea (ENU)-induced missense mutations in Raldh2 and Leo1. The mutations segregate with the cleft face phenotype. Importantly, the nasal cartilages and surrounding bones are patterned and develop normal morphology, except for the lateral displacement because of the cleft. We conclude that the midfacial cleft arises from the failure of the medial convergence of the paired medial nasal prominences between E10.5 to E11.5 rather than defective cell proliferation and death. Our work uncovers a novel mouse model and mechanism for the etiology of midfacial clefting.


Assuntos
Aldeído Oxirredutases/genética , Fenda Labial/genética , Fissura Palatina/genética , Mutação de Sentido Incorreto , Fatores de Transcrição/genética , Animais , Modelos Animais de Doenças , Etilnitrosoureia/toxicidade , Camundongos , Camundongos Mutantes , Mutagênese/efeitos dos fármacos
7.
J Histochem Cytochem ; 67(12): 863-871, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31638440

RESUMO

Optic development involves sequential interactions between several different tissue types, including the overlying ectoderm, adjacent mesoderm, and neural crest mesenchyme and the neuroectoderm. In an ongoing expression screen, we identified that Tfap2ß, Casq2, Penk, Zic1, and Zic3 are expressed in unique cell types in and around the developing eye. Tfap2ß, Zic1, and Zic3 are transcription factors, Casq2 is a calcium binding protein and Penk is a neurotransmitter. Tfap2ß, Zic1, and Zic3 have reported roles in brain and craniofacial development, while Casq2 and Penk have unknown roles. These five genes are expressed in the major tissue types in the eye, including the muscles, nerves, cornea, and sclera. Penk expression is found in the sclera and perichondrium. At E12.5 and E15.5, the extra-ocular muscles express Casq2, the entire neural retina expresses Zic1, and Zic3 is expressed in the optic disk and lip of the optic cup. The expression of Tfap2ß expanded from corneal epithelium to the neural retina between E12.5 to E15.5. These genes are expressed in similar domains as Hedgehog (Gli1, and Ptch1) and the Wnt (Lef1) pathways. The expression patterns of these five genes warrant further study to determine their role in eye morphogenesis.


Assuntos
Calsequestrina/genética , Encefalinas/genética , Olho/embriologia , Proteínas de Homeodomínio/genética , Camundongos/embriologia , Precursores de Proteínas/genética , Fator de Transcrição AP-2/genética , Fatores de Transcrição/genética , Animais , Olho/ultraestrutura , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Camundongos/genética , Camundongos Endogâmicos C57BL , Retina/embriologia , Retina/ultraestrutura , Esclera/embriologia , Esclera/ultraestrutura
8.
Sci Rep ; 8(1): 18021, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30575813

RESUMO

Enlarged fontanelles and smaller frontal bones result in a mechanically compromised skull. Both phenotypes could develop from defective migration and differentiation of osteoblasts in the skull bone primordia. The Wnt/Planar cell polarity (Wnt/PCP) signaling pathway regulates cell migration and movement in other tissues and led us to test the role of Prickle1, a core component of the Wnt/PCP pathway, in the skull. For these studies, we used the missense allele of Prickle1 named Prickle1Beetlejuice (Prickle1Bj). The Prickle1Bj/Bj mutants are microcephalic and develop enlarged fontanelles between insufficient frontal bones, while the parietal bones are normal. Prickle1Bj/Bj mutants have several other craniofacial defects including a midline cleft lip, incompletely penetrant cleft palate, and decreased proximal-distal growth of the head. We observed decreased Wnt/ß-catenin and Hedgehog signaling in the frontal bone condensations of the Prickle1Bj/Bj mutants. Surprisingly, the smaller frontal bones do not result from defects in cell proliferation or death, but rather significantly delayed differentiation and decreased expression of migratory markers in the frontal bone osteoblast precursors. Our data suggests that Prickle1 protein function contributes to both the migration and differentiation of osteoblast precursors in the frontal bone.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Diferenciação Celular/genética , Osso Frontal/embriologia , Proteínas com Domínio LIM/fisiologia , Osteoblastos/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Movimento Celular/genética , Polaridade Celular/genética , Embrião de Mamíferos , Desenvolvimento Embrionário/genética , Células-Tronco Embrionárias/fisiologia , Osso Frontal/citologia , Osso Frontal/metabolismo , Proteínas com Domínio LIM/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Osteoblastos/metabolismo
9.
Gene Expr Patterns ; 27: 46-55, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29122676

RESUMO

The nose is the central feature of the amniote face. In adults, the nose is a structurally and functionally complex organ that consists of bone, cartilage, glands and ducts. In an ongoing expression screen in our lab, we found several novel markers for specific tissues in the nasal region. Here, using in situ hybridization expression experiments, we report that Alx1, Ap-2ß, Crispld1, Eya4, Moxd1, and Penk have tissue specific expression during murine nasal development. At E11.5, we observed that Alx1, Ap-2ß, Crispld1, and Eya4 are expressed in the medial and lateral nasal prominences. We found that Moxd1 and Penk are expressed in the lateral nasal prominences. At E15.5, Alx1 is expressed in nasal septum. Ap-2ß and Crispld1 are expressed in nasal glands and cartilages. Eya4 is expressed in olfactory epithelium. Intriguingly at E15.5 Moxd1 is expressed in all the nasal cartilage while the expression of Penk is restricted to chondrocytes contributing to the posterior nasal septum. The expression domains reported here suggest that these genes warrant functional studies to determine their role in nasal capsule morphogenesis.


Assuntos
Condrócitos/metabolismo , Embrião de Mamíferos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Cavidade Nasal/metabolismo , Mucosa Olfatória/metabolismo , Animais , Células Cultivadas , Condrócitos/citologia , Embrião de Mamíferos/citologia , Feminino , Proteínas de Homeodomínio/metabolismo , Camundongos , Cavidade Nasal/citologia , Mucosa Olfatória/citologia , Transativadores/metabolismo , Fator de Transcrição AP-2/metabolismo
10.
J Anat ; 230(5): 701-709, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28244593

RESUMO

Craniofacial development relies on coordinated tissue interactions that allow for patterning and growth of the face. We know a priori that the Wingless, fibroblast growth factor, Hedgehog and transforming growth factor-beta growth factor signaling pathways are required for the development of the face, but how they contribute to the shape of the face is largely untested. Here, we test how each signaling pathway contributes to the overall morphology of the zebrafish anterior neurocranium. We tested the contribution of each signaling pathway to the development of the ethmoid plate during three distinct time periods: the time of neural crest migration [10 hour post fertilization (hpf)]; once the neural crest is resident in the face (20 hpf); and finally at the time at which the cartilaginous condensations are being initiated (48 hpf). Using geometric morphometric analysis, we conclude that each signaling pathway contributes to the shape, size and morphology of the ethmoid plate in a dose-, and time-dependent fashion.


Assuntos
Osso Etmoide/embriologia , Osso Etmoide/fisiologia , Fatores de Crescimento de Fibroblastos/fisiologia , Transdução de Sinais/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Animais , Movimento Celular/fisiologia , Crista Neural/embriologia , Crista Neural/fisiologia , Peixe-Zebra
11.
Biol Open ; 5(3): 323-35, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26883626

RESUMO

Planar cell polarity (PCP) is controlled by a conserved pathway that regulates directional cell behavior. Here, we show that mutant mice harboring a newly described mutation termed Beetlejuice (Bj) in Prickle1 (Pk1), a PCP component, exhibit developmental phenotypes involving cell polarity defects, including skeletal, cochlear and congenital cardiac anomalies. Bj mutants die neonatally with cardiac outflow tract (OFT) malalignment. This is associated with OFT shortening due to loss of polarized cell orientation and failure of second heart field cell intercalation mediating OFT lengthening. OFT myocardialization was disrupted with cardiomyocytes failing to align with the direction of cell invasion into the outflow cushions. The expression of genes mediating Wnt signaling was altered. Also noted were shortened but widened bile ducts and disruption in canonical Wnt signaling. Using an in vitro wound closure assay, we showed Bj mutant fibroblasts cannot establish polarized cell morphology or engage in directional cell migration, and their actin cytoskeleton failed to align with the direction of wound closure. Unexpectedly, Pk1 mutants exhibited primary and motile cilia defects. Given Bj mutant phenotypes are reminiscent of ciliopathies, these findings suggest Pk1 may also regulate ciliogenesis. Together these findings show Pk1 plays an essential role in regulating cell polarity and directional cell migration during development.

12.
Matrix Biol ; 52-54: 246-259, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26780724

RESUMO

Dentin sialophosphoprotein (DSPP) is one of the major non-collagenous proteins present in dentin, cementum and alveolar bone; it is also transiently expressed by ameloblasts. In humans many mutations have been found in DSPP and are associated with two autosomal-dominant genetic diseases - dentinogenesis imperfecta II (DGI-II) and dentin dysplasia (DD). Both disorders result in the development of hypomineralized and mechanically compromised teeth. The erupted mature molars of Dspp(-/-) mice have a severe hypomineralized dentin phenotype. Since dentin and enamel formations are interdependent, we decided to investigate the process of enamel onset mineralization in young Dspp(-/-) animals. We focused our analysis on the constantly erupting mouse incisor, to capture all of the stages of odontogenesis in one tooth, and the unerupted first molars. Using high-resolution microCT, we revealed that the onset of enamel matrix deposition occurs closer to the cervical loop and both secretion and maturation of enamel are accelerated in Dspp(-/-) incisors compared to the Dspp(+/-) control. Importantly, these differences did not translate into major phenotypic differences in mature enamel in terms of the structural organization, mineral density or hardness. The only observable difference was the reduction in thickness of the outer enamel layer, while the total enamel thickness remained unchanged. We also observed a compromised dentin-enamel junction, leading to delamination between the dentin and enamel layers. The odontoblast processes were widened and lacked branching near the DEJ. Finally, for the first time we demonstrate expression of Dspp mRNA in secretory ameloblasts. In summary, our data show that DSPP is important for normal mineralization of both dentin and enamel.


Assuntos
Esmalte Dentário/diagnóstico por imagem , Proteínas da Matriz Extracelular/genética , Mutação , Fosfoproteínas/genética , Sialoglicoproteínas/genética , Desmineralização do Dente/diagnóstico por imagem , Amelogênese , Animais , Masculino , Camundongos , Camundongos Knockout , Desmineralização do Dente/genética
13.
Dev Cell ; 25(6): 623-35, 2013 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-23806618

RESUMO

Ciliopathies are a broad class of human disorders with craniofacial dysmorphology as a common feature. Among these is high arched palate, a condition that affects speech and quality of life. Using the ciliopathic Fuz mutant mouse, we find that high arched palate does not, as commonly suggested, arise from midface hypoplasia. Rather, increased neural crest expands the maxillary primordia. In Fuz mutants, this phenotype stems from dysregulated Gli processing, which in turn results in excessive craniofacial Fgf8 gene expression. Accordingly, genetic reduction of Fgf8 ameliorates the maxillary phenotypes. Similar phenotypes result from mutation of oral-facial-digital syndrome 1 (Ofd1), suggesting that aberrant transcription of Fgf8 is a common feature of ciliopathies. High arched palate is also a prevalent feature of fibroblast growth factor (FGF) hyperactivation syndromes. Thus, our findings elucidate the etiology for a common craniofacial anomaly and identify links between two classes of human disease: FGF-hyperactivation syndromes and ciliopathies.


Assuntos
Transtornos da Motilidade Ciliar/genética , Anormalidades Craniofaciais/genética , Fator 8 de Crescimento de Fibroblasto/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Síndromes Orofaciodigitais/genética , Animais , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/patologia , Movimento Celular/fisiologia , Transtornos da Motilidade Ciliar/patologia , Anormalidades Craniofaciais/patologia , Proteínas do Citoesqueleto , Modelos Animais de Doenças , Fator 8 de Crescimento de Fibroblasto/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Maxila/anormalidades , Camundongos , Camundongos Mutantes , Crista Neural/anormalidades , Síndromes Orofaciodigitais/patologia , Palato/anormalidades , Fenótipo , Proteína GLI1 em Dedos de Zinco
14.
PLoS One ; 7(11): e50422, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23185619

RESUMO

Glycogen Synthase Kinase 3 (GSK-3) is a key player in development, physiology and disease. Because of this, GSK-3 inhibitors are increasingly being explored for a variety of applications. In addition most analyses focus on GSK-3ß and overlook the closely related protein GSK-3α. Here, we describe novel GSK-3α and GSK-3ß mouse alleles that allow us to visualise expression of their respective mRNAs by tracking ß-galactosidase activity. We used these new lacZ alleles to compare expression in the palate and cranial sutures and found that there was indeed differential expression. Furthermore, both are loss of function alleles and can be used to generate homozygous mutant mice; in addition, excision of the lacZ cassette from GSK-3α creates a Cre-dependent tissue-specific knockout. As expected, GSK3α mutants were viable, while GSK3ß mutants died after birth with a complete cleft palate. We also assessed the GSK-3α mutants for cranial and sternal phenotypes and found that they were essentially normal. Finally, we observed gestational lethality in compound GSK-3ß(-/-); GSK3α(+/-) mutants, suggesting that GSK-3 dosage is critical during embryonic development.


Assuntos
Fissura Palatina/genética , Quinase 3 da Glicogênio Sintase/genética , Palato/enzimologia , RNA Mensageiro/biossíntese , Crânio/enzimologia , Alelos , Animais , Fissura Palatina/enzimologia , Fissura Palatina/patologia , Embrião de Mamíferos , Desenvolvimento Embrionário , Feminino , Dosagem de Genes , Expressão Gênica , Genes Reporter , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Heterozigoto , Homozigoto , Integrases/genética , Integrases/metabolismo , Camundongos , Camundongos Transgênicos , Mutação , Palato/patologia , Gravidez , RNA Mensageiro/genética , Crânio/patologia , beta-Galactosidase
15.
Proc Natl Acad Sci U S A ; 107(49): 21040-5, 2010 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-21078992

RESUMO

Olfactory ensheathing cells (OECs) are a unique class of glial cells with exceptional translational potential because of their ability to support axon regeneration in the central nervous system. Although OECs are similar in many ways to immature and nonmyelinating Schwann cells, and can myelinate large-diameter axons indistinguishably from myelination by Schwann cells, current dogma holds that OECs arise from the olfactory epithelium. Here, using fate-mapping techniques in chicken embryos and genetic lineage tracing in mice, we show that OECs in fact originate from the neural crest and hence share a common developmental heritage with Schwann cells. This explains the similarities between OECs and Schwann cells and overturns the existing dogma on the developmental origin of OECs. Because neural crest stem cells persist in adult tissue, including skin and hair follicles, our results also raise the possibility that patient-derived neural crest stem cells could in the future provide an abundant and accessible source of autologous OECs for cell transplantation therapy for the injured central nervous system.


Assuntos
Linhagem da Célula , Crista Neural/citologia , Neuroglia/citologia , Mucosa Olfatória/citologia , Animais , Transplante de Células , Embrião de Galinha , Técnicas Citológicas , Humanos , Camundongos , Medicina Regenerativa/métodos , Células de Schwann
16.
Dev Biol ; 341(1): 84-94, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19941846

RESUMO

The vertebrate head is an extremely complicated structure: development of the head requires tissue-tissue interactions between derivates of all the germ layers and coordinated morphogenetic movements in three dimensions. In this review, we highlight a number of recent embryological studies, using chicken, frog, zebrafish and mouse, which have identified crucial signaling centers in the embryonic face. These studies demonstrate how small variations in growth factor signaling can lead to a diversity of phenotypic outcomes. We also discuss novel genetic studies, in human, mouse and zebrafish, which describe cell biological mechanisms fundamental to the growth and morphogenesis of the craniofacial skeleton. Together, these findings underscore the complex interactions leading to species-specific morphology. These and future studies will improve our understanding of the genetic and environmental influences underlying human craniofacial anomalies.


Assuntos
Ossos Faciais/embriologia , Crânio/embriologia , Animais , Humanos
17.
Nat Cell Biol ; 11(10): 1225-32, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19767740

RESUMO

The planar cell polarity (PCP) signalling pathway is essential for embryonic development because it governs diverse cellular behaviours, and 'core PCP' proteins, such as Dishevelled and Frizzled, have been extensively characterized. By contrast, the 'PCP effector' proteins, such as Intu and Fuz, remain largely unstudied. These proteins are essential for PCP signalling, but they have never been investigated in mammals and their cell biological activities remain entirely unknown. We report here that Fuz mutant mice show neural tube defects, skeletal dysmorphologies and Hedgehog signalling defects stemming from disrupted ciliogenesis. Using bioinformatics and imaging of an in vivo mucociliary epithelium, we established a central role for Fuz in membrane trafficking, showing that Fuz is essential for trafficking of cargo to basal bodies and to the apical tips of cilia. Fuz is also essential for exocytosis in secretory cells. Finally, we identified a Rab-related small GTPase as a Fuz interaction partner that is also essential for ciliogenesis and secretion. These results are significant because they provide new insights into the mechanisms by which developmental regulatory systems such as PCP signalling interface with fundamental cellular systems such as the vesicle trafficking machinery.


Assuntos
Anormalidades Múltiplas , Polaridade Celular/genética , Cílios/genética , Desenvolvimento Embrionário/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Animais , Cílios/metabolismo , Biologia Computacional/métodos , Proteínas do Citoesqueleto , Embrião de Mamíferos , Epitélio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Homozigoto , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Mutantes , Modelos Moleculares , Tubo Neural/anormalidades , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transporte Proteico/genética , Transdução de Sinais/genética
18.
Development ; 136(2): 219-29, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19056832

RESUMO

The position of the olfactory placodes suggests that these epithelial thickenings might provide morphogenetic information to the adjacent facial mesenchyme. To test this, we performed in ovo manipulations of the nasal placode in the avian embryo. Extirpation of placodal epithelium or placement of barriers on the lateral side of the placode revealed that the main influence is on the lateral nasal, not the frontonasal, mesenchyme. These early effects were consistent with the subsequent deletion of lateral nasal skeletal derivatives. We then showed in rescue experiments that FGFs are required for nasal capsule morphogenesis. The instructive capacity of the nasal pit epithelium was tested in a series of grafts to the face and trunk. Here, we showed for the first time that nasal pits are capable of inducing bone, cartilage and ectopic PAX7 expression, but these effects were only observed in the facial grafts. Facial mesenchyme also supported the initial projection of the olfactory nerve and differentiation of the olfactory epithelium. Thus, the nasal placode has two roles: as a signaling center for the lateral nasal skeleton and as a source of olfactory neurons and sensory epithelium.


Assuntos
Osso Nasal/embriologia , Mucosa Olfatória/embriologia , Animais , Padronização Corporal/efeitos dos fármacos , Padronização Corporal/genética , Embrião de Galinha , Coturnix , Transplante de Tecido Fetal , Fator 8 de Crescimento de Fibroblasto/administração & dosagem , Fator 8 de Crescimento de Fibroblasto/genética , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Mesoderma/embriologia , Osso Nasal/efeitos dos fármacos , Osso Nasal/metabolismo , Mucosa Olfatória/efeitos dos fármacos , Mucosa Olfatória/metabolismo , Mucosa Olfatória/transplante , Fator de Transcrição PAX7/biossíntese , Fator de Transcrição PAX7/genética , Proteínas com Domínio T/genética
19.
Dev Biol ; 318(2): 289-302, 2008 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-18455717

RESUMO

Fibroblast growth factors (FGFs) are required for brain, pharyngeal arch, suture and neural crest cell development and mutations in the FGF receptors have been linked to human craniofacial malformations. To study the functions of FGF during facial morphogenesis we locally perturb FGF signalling in the avian facial prominences with FGFR antagonists, foil barriers and FGF2 protein. We tested 4 positions with antagonist-soaked beads but only one of these induced a facial defect. Embryos treated in the lateral frontonasal mass, adjacent to the nasal slit developed cleft beaks. The main mechanisms were a block in proliferation and an increase in apoptosis in those areas that were most dependent on FGF signaling. We inserted foil barriers with the goal of blocking diffusion of FGF ligands out of the lateral edge of the frontonasal mass. The barriers induced an upregulation of the FGF target gene, SPRY2 compared to the control side. Moreover, these changes in expression were associated with deletions of the lateral edge of the premaxillary bone. To determine whether we could replicate the effects of the foil by increasing FGF levels, beads soaked in FGF2 were placed into the lateral edge of the frontonasal mass. There was a significant increase in proliferation and an expansion of the frontonasal mass but the skeletal defects were minor and not the same as those produced by the foil. Instead it is more likely that the foil repressed FGF signaling perhaps mediated by the increase in SPRY2 expression. In summary, we have found that the nasal slit is a source of FGF signals and the function of FGF is to stimulate proliferation in the cranial frontonasal mass. The FGF independent regions correlate with those previously determined to be dependent on BMP signaling. We propose a new model whereby, FGF-dependent microenvironments exist in the cranial frontonasal mass and caudal maxillary prominence and these flank BMP-dependent regions. Coordination of the proliferation in these regions leads ultimately to normal facial morphogenesis.


Assuntos
Embrião de Galinha , Face/embriologia , Fatores de Crescimento de Fibroblastos/metabolismo , Morfogênese , Animais , Bico/embriologia , Galinhas , Patos/embriologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Pirróis/farmacologia , Receptores de Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA